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ABSTRACT.

Recent research has shown that decadal-to-multidecadal (D2M) climate variability is as-
sociated with environmental changes that have important consequences for human activities,
such as public health, water availability, frequency of hurricanes, and so forth. As scientists,
how do we convert these relationships into decision support products useful to water man-
agers, insurance actuaries, and others, whose principal interest lies in knowing when future
climate regime shifts will likely occur that affect long-horizon decisions? Unfortunately,
numerical models are far from being able to make deterministic predictions for future D2M
climate shifts. However, the recent development of paleoclimate reconstructions of the At-
lantic multidecadal oscillation (AMO) (Gray et al. 2004) and Pacific decadal oscillation
(PDO) (MacDonald and Case 2005) give us a viable alternative:  to estimate probability
distribution functions from long climate index series that allow us to calculate the probabil-
ity of future D2M regime shifts. In this paper, we show how probabilistic projections can be
developed for a specific climate mode — the AMO as represented by the Gray et al. (2004)
tree ring reconstruction. The methods are robust and, in principle, can be applied to any
D2M climate mode for which a sufficiently long index series exists.

1. INTRODUCTION
The last 15 years have seen much research on decadal to multidecadal (D2M) climate

modes and their global and regional impacts. The history of D2M has gone through several
overlapping phases. The earliest, and still ongoing, is the model- and observation-based in-
quiry into the nature and causes of D2M variability with papers relating to the ENSO-like
Pacific Decadal Oscillation (PDO; Gu and Philander 1997; Mantua et al. 1997), a possibly
related Interdecadal Pacific Oscillation (IPO; Folland et al. 1999; Power et al. 1999), the
Arctic Oscillation (AO; Thompson and Wallace 1998), the North Atlantic Oscillation
(NAO; Hurrell 1995; Marshall et al. 2001) and the Atlantic Multidecadal Oscillation
(AMO; Schlesinger and Ramankutty 1994; Andronova and Schlesinger 2000; Delworth
and Mann 2000; Latif et al. 2004). Another phase of research is comprised of papers dem-
onstrating that at least some of these D2M modes suggest compelling manifestations in
climatic and ecological impacts. This is especially notable for precipitation and drought fre-
quency, which appear to be sensitive to small but persistent changes in the prevalent atmos-
pheric circulation patterns over the continental regions adjacent to the oceans that mediate
the oscillations. Impacts have been identified for the PDO (Mantua et al. 1997), the NAO
(Marshall et al. 2001) and the AMO (Enfield et al. 2001), and most recently for the interac-
tion between the PDO and AMO modes (McCabe et al. 2004). Moreover, both the PDO
and the AMO are shown to modulate (render nonstationary) the rainfall signatures of El
Niño-Southern Oscillation (ENSO) in the United States (Gershunov and Barnett 1998;
McCabe and Dettinger 2000; Enfield et al. 2001). Enfield et al. (2001) estimate that the in-
flow to Lake Okeechobee (south Florida's water supply reservoir) undergoes a 40% peak-
to-peak variation associated with the AMO. Another recently identified area of strong im-
pacts is the AMO modulation of major Atlantic hurricane activity (Goldenberg et al. 2001),
whilst Mantua et al. (1997) describe the basin-wide impact of the PDO on Pacific fisheries
such as salmon. From the response of an atmospheric global circulation model (AGCM) to
observed Atlantic SST, Sutton and Hodson (2005) have confirmed the AMO climate im-
pacts suggested by the limited data available (Enfield et al. 2001; McCabe et al. 2004).

Of concern for climate applications is the fact that — unlike El Niño-Southern Oscillation
(ENSO) — numerical models have proven incapable of predicting future phase shifts of
D2M climate modes in a deterministic manner. The alternatives to such predictions are
probability-based projections. However, probabilistic projections are hampered because the
instrumentally based time series are limited to the last 130-150 years at most, which yield
too few realizations of D2M cycles for conventional statistical approaches to deal with. In
this study we resolve the problems associated with small sample sizes for a specific climate
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mode, the AMO, in two ways: (1) by applying Monte Carlo-style resampling techniques to
the index data and (2) by application to the longer, 424-year paleoclimate reconstruction
based on tree rings (Gray et al. 2004). By then adjusting a probability model to the distri-
bution of resampled AMO phase intervals, we extract a practical method for determining the
probability of a future departure from the current AMO climate regime. In lieu of non-
existent deterministic predictions, this method provides an essential element for the devel-
opment of decision support tools for managers and stakeholders in sectors affected by
D2M climate modes, such as agriculture, water, energy, health and disaster risk. For prob-
abilistic projection to be useful, we do not require an understanding of the physical mecha-
nisms governing the climate mode or its impacts, only a reasonable certainty that the impacts
of interest derive from the climate mode in question. Even the latter is irrelevant if the meth-
ods are applied directly to an index of the impact itself, such as a dendrochronological re-
construction of stream flow feeding a water management system.

2. DATA AND METHODS
We use two unsmoothed data sets to index the AMO: an updated (1856-2001) annualized

version of the instrumentally based AMO index suggested by Enfield et al. (2001); and the
424-year annualized index of the AMO reconstructed from tree rings in North America and
Europe (Gray et al. 2004). The former index is the sea surface temperature averaged for the
North Atlantic Ocean from the equator to 70°N. The Gray et al. index is the longer tree-ring
series calibrated against the instrumental index. To discourage unwanted short-interval oc-
currences, the time series are then smoothed with a Butterworth filter of order 8 and a half-
amplitude response cutoff at 15 years. To increase the sample size the method of Ebisuzaki
(1997) is used to randomly resample the series multiple times, and the durations of positive
and negative phases are estimated by the intervals between successive zero crossings of the
resampled series. The empirical distributions of sample intervals are then fitted by a gamma
probability density function (pdf) and a Kolmogorov-Smirnov test is used to determine the
goodness of fit. The resampling and fitting procedure is repeated 50 times to obtain stable
means of the gamma distribution parameters for scale and shape. The gamma fit for the
longer, Gray et al. series is used to construct the probability of future AMO shifts condi-
tional on the time elapsed since the last shift. Finally, the stationarity of the Gray et al. series
is tested by repeating the procedure for three shorter, 141-year segments of the data, then
comparing the distribution parameters obtained. The spread of resulting gamma parameters
is used to estimate the uncertainty of the probability projections.

3. RESAMPLING PROCEDURE

Figure 1 (top panel) shows the smoothed AMO reconstruction of Gray et al. (2004), an-
notated with the intervals between zero crossings, plus similar plots for three randomly re-
sampled versions of the data. The Ebisuzaki (1997) ‘random phase’ method of resampling
consists of transforming the original time series into the frequency domain, randomizing the
Fourier phases, and reverse transforming to the time domain. Unlike most randomizations
in the time domain, this method preserves the original power spectrum but still produces
resampled series whose temporal correlations with each other and the original series are ex-
pected to be zero on average. When the resampling is repeated many times the resulting
autospectra form a two-standard deviation envelope that brackets the spectrum of the origi-
nal data to a good approximation (Figure 2). The assumption implicit in this resampling is
that the original series is extracted from a larger population (longer duration) with time-
invariant statistics (stationary). The question of stationarity will be examined in a later sec-
tion.

As seen in Figure 1 (top panel), the original time series resolves 17 AMO phase intervals
between the mid-16th century and the late 20th century. To obtain a large enough sample for
fitting purposes (about 100), we resample five times. A primary difference between in-
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creasing the sample size spectrally versus a bootstrap resampling of the original 17 intervals
(Efron 1979) is that the latter method produces a sample whose members have numerical
values extracted from and limited to the original 17, whereas the spectral randomization ex-
tracts entirely new values from the same power spectrum signature. With the bootstrap, it is
critical that the original sample be large enough to be representative of the larger population
from which it arises, whilst with the Fourier approach, it is sufficient that the spectrum be
representative of the D2M process.

4. DISTRIBUTION FITTING

The histogram of Figure 3 (top) illustrates a typical empirical distribution of AMO regime
intervals produced by extracting five new time series from the original Gray et al. (2004)
spectrum. The distribution is fit by the smooth curve, which corresponds to a gamma pdf
whose shape (A) and scale (B) parameters are adjusted to the data by maximum likelihood
estimation (MLE). As in the example shown, a Kolmogorov-Smirnov (KS) goodness-of-fit
test is applied to the cumulative distribution (cdf, lower panel) and usually shows the fit to
be acceptable at the 95% level of significance. Each new fivefold resampling results in var-
ied but similar parameter estimates. To obtain a stable estimate of the gamma distribution
for the 424-year period, we average the parameter estimates from 50 resamplings, obtaining
A = 1.93 and B = 10.3. These values are later used to project the risk of future regime shifts.

5. STATIONARITY TEST

We now examine the hypothesis implicit in the above calculations, namely that the 424-
year reconstruction arises from a stationary process. We define stationarity to mean that the
distribution parameters A and B are acceptably invariant in time — in this case, that the con-
fidence intervals about the parameter means overlap between temporally adjacent samples.
Since we have no additional data before or after the Gray et al. reconstruction to test this on,
we instead divide the Gray et al. series into three, non-overlapping 141-year segments and
recalculate the 50-member ensembles for those segments and compare their parameter
spreads. Because we also have the instrumental series with a similar length, which coincides
with the third Gray et al. segment, we also repeat the procedure for that series. This pro-
duces four ensembles of parameter estimates, that is, 50 values of A and B for each of the
four segments tested. These ensembles are summarized by the box-and-whiskers plots of
Figure 4.

Not only the interquartile ranges but also the whiskers (all parameter estimates except for
outliers) are non-overlapping; hence, we can safely reject the stationarity hypothesis because
the whiskers embrace more than 95% of the values. The 424-year parameter means (long
horizontal lines) are bracketed by the segment estimates, especially those after 1700 AD,
which Gray et al. consider the more reliable part of the reconstruction. The instrumental
AMO index also falls within the range of the Gray et al. segments. Hence, we conclude that
the AMO process is nonstationary, that the instrumental and reconstruction segments are
statistically compatible, and that the 424-year mean distribution provides a reasonable basis
for making projections. The fact that the process is nonstationary does not invalidate the
estimation procedure, but it means that the distribution parameters are more uncertain than
implied by the 50-member spread for the longer 424-year estimation. We shall return to this
later.

The segment-to-segment variation of the interval means is not obvious from Figure 4 be-
cause the population mean for each gamma fit is the product of the distribution parameters,
µ = A*B.  For the three Gray et al. data segments the ensemble estimates of the distribution
means are 17.3, 16.4 and 18.7 years, respectively, with 95% confidence intervals ranging
from 0.22 to 0.28 years. Hence, the regime intervals for the middle segment (1708-1848)
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are significantly shorter than before or after. This is qualitatively consistent with the charac-
ter of the tree-ring reconstruction, which shows the dominance of longer intervals near the
start and end of the series (S. Gray, personal comm.).

6. PROBABILITY PROJECTIONS

If we let P(ρ) represent the probability of a realization ρ within the population space of the
stochastic regime intervals (T), we can then construct useful probability projections for fu-
ture realizations. For example, the conditional probability that a future regime shift will oc-
cur within t2 years, given that t1 years have elapsed since the last, opposite regime shift, may
be expressed as

  

€ 

P(T > t1  I  T ≤ t1 + t2 |T > t1) = P(T > t1  I  T ≤ t1 + t2) /P(T > t1)

€ 

= P(t1 < T ≤ t1 + t2) /P(T > t1)

€ 

= (Γ[t1 + t2]−Γ[t1]) /(1−Γ[t1]) Eq. 1

where t = t1 + t2 is the current climate regime interval and Γ[t] is the estimated gamma cdf
(Bartoszynsky and Niewiadomska-Bugaj 1996). A reasonable, further refinement of this
statement is to ignore the probability space for very short intervals (five years or less) that
would normally be ignored in practice in retrospective analysis. This is accomplished by
using a truncated gamma in Eq. 1, Γ'[t] = Γ[t]/(1−Γ[5]), where t > 5. The corresponding
variation of P(ρ) as a function of t1 (abscissa) and t2 (ordinate) is shown in Figure 5.

The projections in Figure 5 provide quantitative estimates of probability. Thus, it is gener-
ally thought that the AMO switched from cool to warm during the 1994-95 time frame. If
we enter Figure 5 with t1 = 10 years (prior to this writing), we find a rather low probability
(< 30%) that the AMO will switch back to its cool phase in less than t2 = 5 years from now.
For t2 = 10 and 15 years, the risk increases to ~51% and ~70%, respectively, and a regime
shift within 20 years is highly likely (~86%). Such a shift, when it occurs, would imply a
return to more frequent droughts in Florida, fewer droughts in the Colorado River basin,
and less frequent severe hurricanes in the tropical Atlantic (Enfield et al. 2001; Goldenberg
et al. 2001; McCabe et al. 2004). As expected, Figure 5 shows that the risk for any of these
t2 values increases as time advances and the last regime shift (1994-95) recedes further into
the past (t1 increases).

Somewhat unintuitively, we see that as t1   increases, the probability of a future climate shift
does not increase very quickly for short-term horizons (small t2  ). Thus, for t1  = 20 and 30
years, the probability at t2   = 5 years has only increased to 39% and 61%, respectively.  This
is a property of conditional distributions because the probability must asymptote to the t1  
axis. What changes more noticeably with t1  , however, is how the probabilities compress into
shorter horizon intervals, i.e., the probability increases at a higher rate for longer horizons.
An easier way to see this is to plot the horizon (t2  ) as a function of t1   and the risk (prob-
ability) (Figure 6). Thus, it can be readily seen that for a relatively high risk level of 70%,
the horizon is less than 6 years when t1   = 30 years, as compared to a horizon of 15 years
when t1   = 10 years. If t1   = 30, a regime shift is virtually assured within a 10 year horizon.

7. UNCERTAINTIES
The uncertainty of such estimates can be derived from the parameter estimates of the three

Gray et al. (2004) time segments, which collectively have a considerably larger spread than
those of the 424-year estimation used for Figure 5. This is primarily due to the nonstation-
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arity of the intervals over the last half millennium (Figure 4). Pooling the 3x50 segment es-
timates of A and B, we then randomly select a large number of parameter values within their
overall 1-α confidence intervals and generate the corresponding rms uncertainty in P(ρ)
over the domain of Figure 5. The uncertainty is fairly uniform over the [t1,t2] domain
shown. For confidence intervals between 95% and 99%, the uncertainty ranges between
±2% (α = 0.05) and ±5% (α = 0.01), respectively.  

We have not fully explored the uncertainties that attend such projections. Besides the un-
certainty associated with natural nonstationarity, it is also desirable to consider how the
quality of the reconstruction will affect the distribution parameters. Coral-based proxies are
notorious for having chronology errors and tree rings suffer from increased calibration un-
certainty during early growth, while different ensembles of corals or trees invariably yield
varying results. Where multiple reconstructions of the same climate index are available (at
least four exist for the PDO) the uncertainty due to the inability of the reconstructions to
perfectly emulate the climate process can be estimated by applying the above methods to the
multiple reconstructions, rather than to segments of a single reconstruction. Only one re-
construction yet exists for the AMO, so we have not done this.

Figure 5 is only one example of a potentially useful climate risk projection tool. Thus for
any given year in which decisions are made, one can also construct a graph showing the
distribution for 

€ 

P(ta < T ≤ tb ) , where ta (abscissa) and tb (ordinate) define a time range, e.g.
10-15 years into the future. The risk of an AMO shift between ta = 2015 AD and
tb = 2020 AD is about 19%.

Other, more esoteric projections can be developed. McCabe et al. (2004) have shown how
the uncorrelated +/- phases of the PDO and AMO have juxtaposed since the mid-19th cen-
tury in ways that plausibly explain mega droughts in the southwestern and Midwestern U.S.
If both oscillations can be statistically modeled as we have done here only for the AMO, it is
possible to develop joint probability projections for the four possible phase-phase scenarios
(+/+. +/-. -/-. -/+), under the assumption that the climate oscillations are mutually inde-
pendent. It is also possible to query the conditional probability for regime interval magni-
tude or intensity — based on the index area subtended between zero crossings — given an
interval of a certain length.

8. SUMMARY AND DISCUSSION

We have shown how a multi-century proxy reconstruction of a climate index may be used
to estimate the probability density function of climate regime intervals, thus providing a ba-
sis for the projection of climate risk and the eventual development of useful decision sup-
port tools. The spectrum preserving resampling of the time series provides sufficient sample
sizes for pdf estimation using the gamma distribution. Application of the methods to several
time segments of the data allow an assessment of stationarity and enable us to estimate the
associated uncertainty in the distribution parameters. We find the AMO to have been non-
stationary over the last half millennium and the associated uncertainty in probability to be in
the range of 2-5%. Finally, we give a detailed example of a derived, climate risk projection
and suggest others that can be developed.

Consider the situation in 1990, more than 20 years into a period of cool North Atlantic sea
surface temperatures (AMO) associated with dry conditions in Florida, wet conditions in the
southwestern region and less frequent hurricanes. It is not difficult to imagine management
decisions that could have been made then as an AMO reversal became imminent within op-
erational time horizons. Where water was expected to become more plentiful, flood control
measures could have been implemented and development on flood plains discouraged.
Where more persistent and/or frequent droughts were expected, more water could have been
shunted to aquifer storage, water access leases shortened, reservoir withdrawals reduced,
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conservation measures implemented and agricultural practices modified. Underwriting asso-
ciations could have increased the funding of windstorm contingency pools in anticipation of
more frequent, destructive hurricanes.

D2M climate risk assessment is not useful only when a climate shift becomes imminent.
In general, for any policy or measure that can be adopted in anticipation of a change, there
exists an alternative to be followed if the probability of change is low. Policies may be re-
viewed periodically in light of changing probabilities and the spectrum and effectiveness of
available mitigation measures can be revised on a regular basis. Cognizance of the changing
nature of climate and its impacts is a relatively recent development and it has taught us that
effective management should not be based on static policies. Perhaps the best example of
this lesson is the recent increase in destructive hurricane potential — related to the change in
the AMO climate regime (Goldenberg et al. 2001) — and its impact on the insurance in-
dustry.

It is important to point out that the usefulness of these methods for actual applications will
depend on the nature of the application, the strength of the connection between the climate
mode and the target variable, and managers’ ability to utilize the projections in making op-
erational decisions. In general, the closer the relationships of the modeled index to the deci-
sion-triggering target variables, the better. Thus, if a proxy reconstruction of stream flow
exists, this may be more useful to model than the climate mode whose association with the
stream flow is less than perfect. However, projections based on a climate mode have the ad-
vantage of being appropriate over a wider range of applications and geographic regions.

Finally, the ultimate uncertainty for which there is no sure remedy at present, is the effect
that global climate change will have on future climate regime characteristics.  However, it is
worth noting that if the true future distribution parameters are different from those in the
past, the effect on risk projection (as shown in Figure 5) is to shift all probabilities in the
same direction and by similar amounts. Hence, the relative change in probability from one
part of the domain to another is little affected by a parameter discrepancy. Arguably, the
evolving change in risk is more likely to influence management and policy adjustments, than
is the absolute risk at a given position, as long as the errors are within reasonable bounds. In
fact, this principle applies to all sources of uncertainty.
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Figure 1. Upper panel: Smoothed annual tree ring reconstruction of the Atlantic
multidecadal oscillation (AMO) index by Gray et al. (2004). Lower panels: Smoothed re-
sampled versions of the Gray et al. index using randomization in the frequency domain
(Ebisuzaki 1997). Numeric annotations are the intervals (years) between zero crossings.
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Figure 2. Black curve: Autospectrum of the unsmoothed Gray et al. (2004) index. Light-
shaded envelope:  mean ± 2 standard deviations of the spectral energy at each frequency for
50 resampled versions of the unsmoothed Gray et al. index.
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Figure 3. Upper panel: histogram (vertical bars) of zero crossing intervals from a
set of five resampled and smoothed versions of the Gray et al. (2004) index and
the maximum likelihood (MLE) gamma probability distribution (solid curve) fit
to the histogram. Lower panel: cumulative empirical distribution (vertical bars)
and gamma cumulative distribution function (solid curve), indicating that the
Kolmogorov-Smirnov goodness-of-fit criterion is satisfied at the 95% significance
level.
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 Fig-
ure 4. Box and-whiskers plots for four 50-member sets of shape (A, upper panel) and scale
(B, lower panel) parameter estimates. Those for the three 141-year segments of the Gray et
al. reconstruction are shown to the left of the vertical dashed line. Those for the instrumental
AMO index are show to the right of the line. Each box has horizontal lines at the lower
quartile, median, and upper quartile values.  The whiskers are vertical lines extending from
the boxes to show the extent of the rest of the data.  Outliers are + symbols beyond the
ends of the whiskers. The long horizontal line in each panel marks the mean value of the 50-
member ensemble for the entire 424-year reconstruction.
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Figure 5. Distribution of the probability of an AMO regime shift occurring wthin t2 future
years (ordinate) given that t1 years (abscissa) have elapsed since the last regime shift. Based
on the gamma distribution with scale and shape parameters of 10.3 years and 1.93, trun-
cated for t2 + t2 > 5 years (see text).  
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Figure 6. Distribution of the horizon (t2 ) for an AMO regime shift as a function of risk
level (%, ordinate) given that t1 years (abscissa) have elapsed since the last regime shift.
Based on the gamma distribution with scale and shape parameters of 10.3 years and 1.93,
truncated for t2 + t2 > 5 years (see text).  


